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Today, I will:

• Review the problem
• Review nitrogen metabolism
• Discuss basic design principles of 

nitrogen removal
• Review nitrogen removal technologies
• Some research efforts at Virginia Tech 

that relate to this topic



Point sources accounted for 20% of the nitrogen 
load to the Bay in 2002

Sources of Nitrogen to the Chesapeake Bay (Data from 
State of the Bay, 2002)
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Why do we need to remove nutrients?
Algae composition = C106H263O110N16P

1 g N yields 16 g algae
1 g P yields 114 g algae

http://www.nos.noaa.gov/education/kits/estuaries/



The Nitrogen Cycle
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Conventional N removal involves 
coupling aerobic nitrifiers with anoxic 
denitrifiers
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Need to optimize organic carbon 
loading to achieve high quality effluent

Grady, Daigger and Lim, 1999
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Conventional N removal involves 
coupling aerobic nitrifiers with anoxic 
denitrifiers
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Nitrification
• Process implications from kinetics

– Nitrifiers are slow growers (defines SRT)
– Nitrification tends to be an “all-or-none”

phenomenon (on or off)



Sludge age must be selected to 
ensure nitrification

Grady, Daigger and Lim, 1999



Nitrification
• Process implications from kinetics

– Nitrifiers are slow growers (defines SRT)
– Nitrification tends to be an “all-or-none”

phenomenon (on or off)
– Kinetics of growth are very sensitive to:

• temperature
• dissolved oxygen concentration
• pH (optimal 7.5 - 8.6)
• C:N ratio
• inhibiting compounds



Dissolved oxygen must be sufficient to 
ensure complete nitrification

Grady, Daigger and Lim, 1999



Conventional N removal involves 
coupling aerobic nitrifiers with anoxic 
denitrifiers
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Conventional nitrogen removal can be  
achieved through a range of treatment 
configurations
• Single sludge systems
• Post bioreactor filtration systems
• Integrated fixed film/activated sludge 

systems
• Fixed film systems



MLE Process

Grady, Daigger and Lim, 1999

- Total N: 4 to 8 mg/L
- Anoxic volume:Aerobic volume ~ 30:70



Four-Stage Bardenpho
- Improved N removal with second stage
- Reliable Total N to 3 mg/L unlikely

Grady, Daigger and Lim, 1999



Virginia Initiative Plant (VIP)

Grady, Daigger and Lim, 1999



Separate stage single sludge N 
removal process

Methanol or 
Fermentation products

- 3 to 5 day SRT
- Cost of supplemental organic 
source must be considered
- Common retrofit strategy

Grady, Daigger and Lim, 1999



Fixed film denitrification or nitrification 
can be used as well

ODI Biofor Systems

cBOD removal
Nitrification



Factors that Affect BNR
• SRT
• Wastewater BOD5/Nutrient ratios
• Organic matter composition
• Effluent TSS
• Environmental Factors
• - Temperature
• - pH
• - Dissolved O2 concentration

• Sludge Handling Practices



Consider the impact of effluent TSS

Consider a floc of bacteria: C5H7O2N

10 mg/L effluent TSS = 1.5 mg/L effluent Total N



Slides by Chris 
deBarbadillo, Black 
and Veatch, 
Charlotte, NC
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Upflow continuous backwash filters provide 
enhanced performance for TN removal

Slides by Chris deBarbadillo, Black and Veatch, Charlotte, NC



Factors that Affect BNR
• SRT
• Wastewater BOD5/Nutrient ratios
• Organic matter composition
• Effluent TSS
• Environmental Factors
• - Temperature
• - pH
• - Dissolved O2 concentration

• Sludge Handling Practices



Consider the impact of reject water on 
overall N removal capacity of a plant
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Conventional Nitrification/Denitrification
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Single reactor system for High Ammonia 
Removal Over Nitrite (SHARON)
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Anaerobic Ammonium Oxidation 
(ANAMMOX)

Adapted from 
Ye et al., 
2001.
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Completely autotrophic
nitrogen removal over nitrite (CANON)
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Adapted from 
Ye et al., 
2001.
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Oxygen Limited Autotrophic Nitrification 
plus Denitrification (OLAND)
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Ye et al., 
2001.
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Nitrogen removal is critical to the health of 
the Bay

35% of the Bay volume was 
considered to be a “dead zone”

[Chesapeake Bay Foundation 
State of the Bay 2004]


